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The 3k Factorial Design

3k factorial design:
it is a factorial arrangement with k factors each at three levels, which are de-
noted by:

0 - low,

1 - intermediate,

2 - high.

Example:
consider the 32 design, quantitative factors, and let x1 represent the factor A
and x2 represent factor B. A regression model relating the response y to x1

and x2 that is supported by this design is

y = β0+β1x1+β2x2+β12x1x2+β11x2
1 +β22x2

2 +β122x1x2
2 +β112x2

1 x2+β1122x2
1 x2

2 +ε

Notice:
The addition of third factor level allows the relationship between the response
and the design factors to be modeled as a quadratic. The two factor interaction
AB is then subdividing into four single degree of freedom components.
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The 3k Factorial Design

We can label the design points, similar to what we did in 2k factorial design.

However, the coding using {0, 1, 2},which is a generalization of the {0, 1} cod-
ing that we also used in the 2k design is more preferred.
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The 3k Factorial Design

3k factorial design allows to model a curvature in the response function. How-
ever, two points need to be considered.

1. The 3k design is not the most efficient way to model a quadratic
relationship (the response surface designs are superior alternatives).

2. The 2k design augmented with center points is an excellent way to
obtain an indication of curvature. It allows one to keep the size and
complexity of the design low and simultaneously obtain some protection
against curvature. Then, if curvature is important, the 2k design can be
augmented with axial runs to obtain a central composite design.
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The 32 Factorial Design

Let us consider 32 factorial design. There are 8 DF between treatment com-
binations, where the main effects of A and B each have 2 DF, and the AB
interaction has 4 DF.

If the factor is quantitative:
Each main effect can be represented by a linear and a quadratic component,
each with a single degree of freedom. The two-factor interaction AB may be
partitioned in two ways.

The first method consists of subdividing AB into the four single-degree-of-
freedom components corresponding to ABL×L, ABL×Q , ABQ×L, and ABQ×Q .
This can be done by fitting the terms β12, β122, β112, and β1122.

And for the interaction sum of squares hold:

SSAB = SSABLxL + SSABLxQ + SSABQxL + SSABQxQ

where L denoted linear and Q quadratic.
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The 32 Factorial Design - partitioning of the AB interaction

Another way how to subdivide the interaction AB is to use Latin Squares. This
method doesn’t require that the factors be quantitative and it is usually asso-
ciated with the case where all factors are qualitative.

Since interactions in three level designs don’t have the same number of de-
grees of freedom as main effects we must partition the interactions into pseudo
components (pseudo factors) called the AB component and the AB2 compo-
nent. These components could be called pseudo-interaction effects.

The components are defined as a linear combination as follows:

LevelsAB = x1 + x2(mod3)

LevelsAB2 = x1 + 2x2(mod3)
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The 32 Factorial Design
Pseudo components of decomposition of AB interaction in 32 design:

LevelsAB = x1 + x2(mod3)

LevelsAB2 = x1 + 2x2(mod3)

The components AB and AB2 each have two degrees of freedom. Note that

A2B = (A2B)2 = A4B2 = AB2.

The partitioning has no actual meaning and is not displayed in ANOVA results,
but is useful in constructing more complex designs.
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The 32 Factorial Design - Latin Squares construction

Let us consider 32 factorial design. In latin square notation we obtain:

Latin block a = AB component Q : = x1 + x2 = 0(mod3)

R : = x1 + x2 = 1(mod3)

S : = x1 + x2 = 2(mod3)

Latin block b = AB2 component Q : = x1 + 2x2 = 0(mod3)

R : = x1 + 2x2 = 1(mod3)

S : = x1 + 2x2 = 2(mod3)

SSAB = SSa + SSb

The AB and AB2 components have no physical significance and can be called
as I and J components of interaction:

I(AB) = AB2

J(AB) = AB

01NEX - Lecture 09 - 3k Factorial and Response Surface Design 8



The 32 Factorial Design - Example

The effective life of a cutting tool installed in a numerically controlled machine
is thought to be affected by the cutting speed and the tool angle.

Three speeds and three angles are selected, and a 32 factorial experiment
with two replicates is performed.
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The 32 Factorial Design - Example
Simple 32 Factorial Design - ANOVA with interaction.

summary(aov(lm(Life~Angle*Speed,data=data_55f)))
Df Sum Sq Mean Sq F value Pr(>F)

Angle 2 24.33 12.167 8.423 0.00868 **
Speed 2 25.33 12.667 8.769 0.00770 **
Angle:Speed 4 61.33 15.333 10.615 0.00184 **
Residuals 9 13.00 1.444

Regression model with interaction.

summary(lm(Life~Angle*Speed,data=data_55))
Call:
lm.default(formula = Life ~ Angle * Speed, data = data_55)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -34.000000 21.704028 -1.567 0.140
Angle 1.366667 1.063276 1.285 0.220
Speed 0.213333 0.143372 1.488 0.159
Angle:Speed -0.008000 0.007024 -1.139 0.274
Residual standard error: 2.483 on 14 degrees of freedom
Multiple R-squared: 0.3038,Adjusted R-squared: 0.1546
F-statistic: 2.036 on 3 and 14 DF, p-value: 0.1551
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The 32 Factorial Design - Example

Regression with quadratic terms and 4 interaction terms.

summary(lm(Life~Angle+Speed+Angle:Speed+I(Angle^2)+I(Speed^2)
+I(Angle^2):Speed+I(Speed^2):Angle+I(Angle^2):I(Speed^2))

Coefficients:
Estim.Std. Error t value Pr(>|t|)

(Intercept) -1.068e+03 7.022e+02 -1.521 0.1626
Angle 1.363e+02 7.261e+01 1.877 0.0932 .
Speed 1.448e+01 9.503e+00 1.524 0.1619
I(Angle^2) -4.080e+00 1.810e+00 -2.254 0.0507 .
I(Speed^2) -4.960e-02 3.164e-02 -1.568 0.1514
Angle:Speed -1.864e+00 9.827e-01 -1.897 0.0903 .
Speed:I(Angle^2) 5.600e-02 2.450e-02 2.285 0.0481 *
Angle:I(Speed^2) 6.400e-03 3.272e-03 1.956 0.0822 .
I(Angle^2):I(Speed^2) -1.920e-04 8.158e-05 -2.353 0.0431 *
Residual standard error: 1.202 on 9 degrees of freedom
Multiple R-squared: 0.8952,Adjusted R-squared: 0.802
F-statistic: 9.606 on 8 and 9 DF, p-value: 0.001337
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The 32 Factorial Design - Example

ANOVA with quadratic terms and 4 interaction terms.

summary(aov(lm(Life~Angle+Speed+Angle:Speed
+I(Angle^2)+I(Speed^2)+I(Angle^2):Speed+I(Speed^2):Angle
+I(Angle^2):I(Speed^2))))

Df Sum Sq Mean Sq F value Pr(>F)
Angle 1 8.33 8.33 5.769 0.039772 *
Speed 1 21.33 21.33 14.769 0.003948 **
I(Angle^2) 1 16.00 16.00 11.077 0.008824 **
I(Speed^2) 1 4.00 4.00 2.769 0.130451
Angle:Speed 1 8.00 8.00 5.538 0.043065 *
Speed:I(Angle^2) 1 2.67 2.67 1.846 0.207306
Angle:I(Speed^2) 1 42.67 42.67 29.538 0.000414 ***
I(Angle^2):I(Speed^2) 1 8.00 8.00 5.538 0.043065 *
Residuals 9 13.00 1.44

SSAB = SSLxL + SSLxQ + SSQxL + SSQxQ = 8 + 42.67 + 2.67 + 8.00 = 61.34.
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The 32 Factorial Design - Example
Interaction decomposition by Latin Squares

SSblock a =
182 + (−2)2 + 82

(3)(2)
− 242

(9)(2)
= 33.34

SSblock b =
02 + 62 + 182

(3)(2)
− 242

(9)(2)
= 28.00

SSAB = SSblock a + SSblock b = 33.34 + 28.00 = 61.34
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The 3k Factorial Design

In 33 design the two-factor interaction can be decomposed into eight single
degree of freedom components (linear and quadratic combinations) or into
four orthogonal two degree of freedom components, which are usually called
W , X , Y , and Z .

LevelsAB2C2 = W (ABC) : = x1 + 2x2 + 2x3 = 0(mod3)

LevelsAB2C = X (ABC) : = x1 + 2x2 + x3 = 0(mod3)

LevelsABC2 = Y (ABC) : = x1 + x2 + 2x3 = 0(mod3)

LevelsABC = Z (ABC) : = x1 + x2 + x3 = 0(mod3)

In general 3k design, the only exponent allowed on the first letter is 1.

Like the I and J components, the W, X, Y, and Z components have no practical
interpretation.

This decomposition is very useful, when we want to block 3k design into 3p

blocks. We take one of the component of the interaction and confound it with
blocks.
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How to follow up experimentation
Iterative experimentation with alternatives for a subsequent set of runs de-
pending on results from a previous set.
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Response Surface Designs (RSD)

Response Surface Designs, sometime called Response Surface Methods (RSM),
is a collection of techniques useful for modeling and analysis of problems in
which a response of interest y is influenced by several variables x1, x2, . . . , xk

and the goal is to optimize this response,

y = f (x1, x2, . . . , xk ) + ε,

where ε represents the noise or error observed in the response y and

f (x1, x2, . . . , xk ) = E [y ]

is called a response surface.
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Response Surface Designs (RSD)

RSD is a sequential procedure and frequently, the initial estimate of the op-
timum operating conditions is far from the actual optimum. The method of
steepest ascent is a procedure for moving sequentially in the direction of the
maximum increase in the response. We usually assume that in a small region
of the x ’s is the response fitted by first-order model and the steepest ascent is
a gradient procedure.
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An Example of Steepest Ascent

The yield y of a chemical process depends on reaction time A and temperature
B. Current conditions are 35 min. and 155 F.

I Objective: Determine the operating conditions that maximize yield.
I Variables: Reaction Time & Temperature.
I Parameters: Time (30, 40) min, Temperature (150, 160) F.

x1 =
time − 35

5

x2 =
temperature − 155

5
First order model:

y = β0 + β1x1 + β2x2 + ε
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An Example of Steepest Ascent

> time = c(30, 40, 30, 40)
> temp = c(150, 150, 160,160)
> yield = c(39.3, 40.9, 40.0, 41.5)
> x1 = (time - 35)/5
> x2 = (temp - 155)/5
> data11_1 = data.frame(time,temp,x1,x2,yield)
> summary(lm( yield ~ x1 + x2,data = data11_1))

Call:
lm.default(formula = yield ~ x1 + x2, data = data11_1)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 40.425 0.025 1617 0.000394 ***
x1 0.775 0.025 31 0.020529 *
x2 0.325 0.025 13 0.048875 *
Residual standard error: 0.05 on 1 degrees of freedom
Multiple R-squared: 0.9991,Adjusted R-squared: 0.9973
F-statistic: 565 on 2 and 1 DF, p-value: 0.02974
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An Example of Steepest Ascent
First order model:

y = 40.425 + 0.775x1 + 0.325x2
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An Example of Steepest Ascent
Contour plot of Yield process example for first order model:

y = 40.425 + 0.775x1 + 0.325x2
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An Example of Steepest Ascent
To estimate parameters in interaction model we have to add some center
points, which

I allows us to estimate the experimental error σ,
I allows us to test the interaction effect,
I allows us to check for curvature.

We added four observations at the center to get an independent estimation of
σ and check the fit of the first-order model or a curvature.
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An Example of Steepest Ascent
The replicates at the center can be used to calculate an estimate of experi-
mental error σ2:

σ̂2 = MSE =

∑
centerpoints(yi − ȳC)2

nc − 1
=

0.172
4

= 0.043

Second order model - checking for curvature

y = β0 + β1x1 + β2x2 + β12x1x2 + β11x2
1 + β22x2

2 + ε

Estimation of curvature is an estimate for β11 + β22

ȳF − ȳC = 40.425− 40.46 = −0.035

Test of curvature

SScurv =
nF nC(ȳF − ȳC)2

nF + nC
= 0.0027

No evidence of Curvature (Pure quadratic effect), F = SScurv

σ̂2
= 0.063

> pf(0.063,1,4,lower.tail=F)
[1] 0.8141821
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An Example of Steepest Ascent
Apply the method of steepest ascent on the first order model:

y = 40.425 + 0.775x1 + 0.325x2

Direction of steepest ascent - slope: 0.325
0.775 = 0.42

Step size in minutes: ∆x1 = 5

Local minimum find in step 10 and we should run another first order model
around this new conditions.
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An Example of Steepest Ascent

> x1 = (time - 85)/5
> x2 = (temp - 175)/5
> data11_3b = data.frame(time,temp,x1,x2,y1)
> data11_3b

time temp x1 x2 y1
1 80.00 170.00 -1.000 -1.000 76.5
2 80.00 180.00 -1.000 1.000 77.0
3 90.00 170.00 1.000 -1.000 78.0
4 90.00 180.00 1.000 1.000 79.5
5 85.00 175.00 0.000 0.000 79.9
6 85.00 175.00 0.000 0.000 80.3
7 85.00 175.00 0.000 0.000 80.0
8 85.00 175.00 0.000 0.000 79.7
9 85.00 175.00 0.000 0.000 79.8
10 92.07 175.00 1.414 0.000 78.4
11 77.93 175.00 -1.414 0.000 75.6
12 85.00 182.07 0.000 1.414 78.5
13 85.00 167.93 0.000 -1.414 77.0
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An Example of Steepest Ascent

Linear regression model with interaction:

> summary(model3b)
Call:
lm.default(formula = y1 ~ x1 + x2 + I(x1^2) + I(x2^2) + x1:x2,

data = data11_3b)
Residuals:
Min 1Q Median 3Q Max
-0.23995 -0.18089 -0.03995 0.17758 0.36005
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 79.93995 0.11909 671.264 < 2e-16 ***
x1 0.99505 0.09415 10.568 1.48e-05 ***
x2 0.51520 0.09415 5.472 0.000934 ***
I(x1^2) -1.37645 0.10098 -13.630 2.69e-06 ***
I(x2^2) -1.00134 0.10098 -9.916 2.26e-05 ***
x1:x2 0.25000 0.13315 1.878 0.102519
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.2663 on 7 degrees of freedom
Multiple R-squared: 0.9827,Adjusted R-squared: 0.9704
F-statistic: 79.67 on 5 and 7 DF, p-value: 5.147e-06
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An Example of Steepest Ascent

ANOVA of Linear regression model with interaction:

> summary(aov(model3b))
Df Sum Sq Mean Sq F value Pr(>F)
x1 1 7.920 7.920 111.687 1.48e-05 ***
x2 1 2.123 2.123 29.941 0.000934 ***
I(x1^2) 1 10.982 10.982 154.866 4.98e-06 ***
I(x2^2) 1 6.972 6.972 98.323 2.26e-05 ***
x1:x2 1 0.250 0.250 3.526 0.102519
Residuals 7 0.496 0.071
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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An Example of Steepest Ascent
Linear regression model without interaction:

> summary(model3bb)
Call:
lm.default(formula = y1 ~ x1 + x2 + I(x1^2) + I(x2^2), data = data11_3b)
Residuals:
Min 1Q Median 3Q Max
-0.23995 -0.18089 -0.08232 0.06005 0.44808
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 79.9400 0.1366 585.215 < 2e-16 ***
x1 0.9951 0.1080 9.213 1.56e-05 ***
x2 0.5152 0.1080 4.770 0.00141 **
I(x1^2) -1.3764 0.1158 -11.883 2.31e-06 ***
I(x2^2) -1.0013 0.1158 -8.645 2.49e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.3054 on 8 degrees of freedom
Multiple R-squared: 0.974,Adjusted R-squared: 0.961
F-statistic: 75.02 on 4 and 8 DF, p-value: 2.226e-06

Model without interaction has some disadvantages. We can not use standard second

order model and determine stationary points easily.
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An Example of Steepest Ascent
Location of stationary point - Response surface plot of Yield process exam-
ple
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The Second-Order Response Surface Model

y = β0 + β1x1 + β2x2 + β12x1x2 + β11x2
1 + β22x2

2 + ε

Central composite design (CCD): optimization and fitting the model is easy.
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The Second-Order Response Surface Model

ŷ = β̂0 + xT b + xT Bx,

where xT = (x1, x2, . . . , xk ), bT = (β̂1, . . . , β̂k ) and

B =


β̂11

β̂12
2 · · · β̂1k

2
β̂12

2 β̂22 · · · β̂2k
2

...
...

...
...

β̂1k
2

β̂1k
2 · · · β̂kk


The general mathematical solution for the location of the stationary point for fitted sec-
ond order model is:

∂ŷ
∂x

= b + 2Bx = 0

xstationary = −
1
2

B−1b

and the predicted response at the stationary point is:

ŷstationary = β̂0 +
1
2

xT
stationary b
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The Second-Order Response Surface Model

> b = matrix(c(model3b$coeff[2],model3b$coeff[3]),2,1)
> B = matrix(c(model3b$coeff[4], model3b$coeff[6]/2,
+ model3b$coeff[6]/2,model3b$coeff[5]),2,2)
> cbind(b,B)
[,1] [,2] [,3]
[1,] 0.9950503 -1.376449 0.125000
[2,] 0.5152028 0.125000 -1.001336
> x_stat = -1/2 * solve(B) %*% b
> x_stat_natur = c((5*x_stat[1]+85), (5*x_stat[2] +175))
> y_stat_natur = predict(model3b,

data.frame(x1=x_stat[1],x2=x_stat[2]))
> x_stat
[,1]
[1,] 0.3892304
[2,] 0.3058466
> x_stat_natur
[1] 86.94615 176.52923
> y_stat_natur
1
80.21239
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An Example of Steepest Ascent
Location of stationary point - Contour plot of Yield process example
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Multiple Responses

Designs with multiple responses are common in practice. Typically, we want to
simultaneously optimize all responses, or find a set of conditions where certain
product properties are achieved.

A simple approach is to model all responses and overlay the contour plots.
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Today Exercises
If necessary, continue in measurement to finish HW 02 from the last lesson.

Solve problems 11.8 from D.
C. Montogomery DAOE.

The data were collected in an
experiment to optimize crystal
growth as a function of three
variables x1, x2, and x3. Large
values of y (yield in grams) are
desirable. Fit a second-order
model and analyze the fitted
surface. Under what set of
conditions is maximum growth
achieved?
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Today Exercises

Solve problems 11.12 from D.
C. Montogomery DAOE.

Consider the three-variable
central composite design.
Analyze the data and draw
conclusions, assuming that we
wish to maximize conversion
(y1) with activity (y2) between
55 and 60 achieved?
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